Skip to content

Multimodal and Specialized Tokenizers

⚠️ CRITICAL NOTICE - NOT YET IMPLEMENTED ⚠️

STATUS: 🚧 PLANNED FEATURE - NOT CURRENTLY AVAILABLE 🚧

The multimodal and specialized tokenizers described in this document are NOT YET IMPLEMENTED in AI-OS. This document represents planned future functionality.

What works NOW: - βœ… GPT-2, Qwen 2.5, Mistral 7B, Code Llama, DeepSeek-Coder V2, StarCoder2, Phi-3 Mini

What does NOT work yet: - ❌ CLIP, LLaVA, SigLIP (Vision/Multimodal) - ❌ BioBERT, SciBERT, Legal-BERT, FinBERT (Specialized domains) - ❌ Image processing pipeline - ❌ Vision-language model support

Last Verified: October 13, 2025

For currently supported tokenizers, see: docs/SUPPORTED_TOKENIZERS.md (to be created)


Date: October 13, 2025
Major Update: Added Vision, Multimodal, and Domain-Specialized Tokenizers
⚠️ Status: DOCUMENTATION ONLY - IMPLEMENTATION PENDING


πŸš€ What's New (PLANNED)

🎨 Vision & Multimodal Tokenizers (3)

Train AI models that understand images, videos, and vision-language tasks:

Tokenizer Vocab Best For Downloaded
CLIP (Vision-Language) πŸ–ΌοΈ 49,408 Image-text understanding, zero-shot vision βœ… Yes
LLaVA 1.5 (Vision Chat) πŸ’¬ 32,000 Visual Q&A, image understanding, multimodal chat βœ… Yes
SigLIP 🎯 32,000 Advanced vision-language, better than CLIP βœ… Yes

πŸ”¬ Specialized Domain Tokenizers (4)

Train AI models for specific professional domains:

Tokenizer Vocab Best For Downloaded
BioBERT 🧬 28,996 Biomedical, healthcare, medical research βœ… Yes
SciBERT πŸ”¬ 31,090 Scientific papers, academic research βœ… Yes
Legal-BERT βš–οΈ 30,522 Legal documents, contracts, compliance ⚠️ No
FinBERT πŸ’° 30,873 Financial analysis, trading, markets ⚠️ No

πŸ“Š Complete Tokenizer Collection

Total: 16 Tokenizers across all categories!

General Purpose (4)

  • ⭐ Qwen 2.5 - 151K vocab (Best overall, 2025)
  • Llama 3 - 128K vocab (Requires auth)
  • Mistral 7B - 32K vocab
  • GPT-2 - 50K vocab (Legacy)

Code Specialized (3)

  • ⭐ DeepSeek-Coder V2 - 100K vocab (Best for code, 2025)
  • StarCoder2 - 49K vocab (600+ languages)
  • Code Llama - 32K vocab (Stable)

Vision & Multimodal (3) πŸ†•

  • CLIP (Vision-Language) - 49K vocab (Image-text)
  • LLaVA 1.5 - 32K vocab (Visual chat)
  • SigLIP - 32K vocab (Advanced vision)

Specialized Domains (4) πŸ†•

  • BioBERT - 29K vocab (Biomedical)
  • SciBERT - 31K vocab (Scientific)
  • Legal-BERT - 31K vocab (Legal)
  • FinBERT - 31K vocab (Financial)

Compact & Efficient (2)

  • Phi-3 Mini - 32K vocab
  • GPT-2 Base Model - 50K vocab (Backward compatible)

🎨 Vision & Multimodal Use Cases

CLIP (Vision-Language)

What it does: - Understands relationships between images and text - Zero-shot image classification - Image-text retrieval - Image generation guidance

Training Examples: - Image captioning datasets - Visual question answering - Image-text matching - Multimodal embeddings

Best for: - Building image search engines - Visual understanding systems - Text-to-image generation - Multimodal AI assistants

Model Architecture:

Input: Image + Text
      ↓
CLIP Tokenizer (49,408 vocab)
      ↓
Dual Encoders (Vision + Language)
      ↓
Shared Embedding Space
      ↓
Output: Similarity Scores / Embeddings

LLaVA 1.5 (Vision Chat)

What it does: - Visual question answering - Image understanding and description - Multimodal conversation - Visual reasoning

Training Examples: - VQA datasets (Visual Question Answering) - Image description pairs - Visual instruction following - Multimodal dialogue

Best for: - Visual chatbots - Image analysis assistants - Accessibility tools (image description) - Educational AI tutors

Model Architecture:

Input: Image + Question
      ↓
Vision Encoder (ViT) + LLaVA Tokenizer (32K)
      ↓
Multimodal Fusion
      ↓
Language Model Decoder
      ↓
Output: Text Answer

SigLIP (Sigmoid Loss Vision)

What it does: - Improved vision-language alignment - Better zero-shot classification - More efficient training (sigmoid loss vs softmax) - Enhanced image understanding

Training Examples: - Large-scale image-text pairs - Visual classification tasks - Image retrieval datasets - Cross-modal learning

Best for: - Advanced vision-language models - Efficient multimodal training - Zero-shot vision tasks - Production vision systems


πŸ”¬ Specialized Domain Use Cases

BioBERT (Biomedical) 🧬

What it does: - Understanding medical terminology - Biomedical named entity recognition - Clinical text analysis - Drug-disease relationship extraction

Training Examples: - PubMed abstracts - Clinical notes - Medical research papers - Drug interaction databases - Disease symptom datasets

Best for: - Medical AI assistants - Clinical decision support - Biomedical research tools - Healthcare chatbots - Drug discovery AI

Pre-trained on: - 4.5B words from PubMed abstracts - 13.5B words from PMC full-text articles

SciBERT (Scientific) πŸ”¬

What it does: - Understanding scientific terminology - Research paper analysis - Citation relationship extraction - Scientific entity recognition

Training Examples: - Academic papers (1.14M papers) - Scientific abstracts - Research datasets - Technical documentation - Lab reports

Best for: - Research paper summarization - Literature review automation - Scientific question answering - Academic writing assistance - Grant proposal analysis

Pre-trained on: - 1.14M papers from Semantic Scholar - 18% computer science papers - 82% biomedical papers

What it does: - Understanding legal terminology - Contract analysis - Legal document classification - Case law reasoning

Training Examples: - Legal contracts - Court opinions - Legislation text - Legal briefs - Regulatory documents

Best for: - Contract review automation - Legal research assistants - Compliance checking - Document classification - Legal chatbots

Pre-trained on: - Legal corpora - Case law databases - Legislation texts

FinBERT (Financial) πŸ’°

What it does: - Financial sentiment analysis - Market trend prediction - Financial entity recognition - Risk assessment

Training Examples: - Financial news articles - Earnings reports - Market analysis - Trading data - Economic indicators

Best for: - Trading algorithms - Financial news analysis - Risk assessment tools - Investment research - Financial chatbots

Pre-trained on: - Financial news and reports - Corporate filings - Market commentary


🎯 Choosing the Right Tokenizer

For Image Understanding & Generation

Use: CLIP πŸ–ΌοΈ - Large vocabulary (49K) - Industry-standard vision-language model - Zero-shot capabilities - Compatible with Stable Diffusion and other image models

Example Projects: - Image search engines - Content moderation - Visual similarity matching - Text-to-image applications

For Visual Question Answering

Use: LLaVA 1.5 πŸ’¬ - Optimized for visual chat - Instruction following - Multimodal conversation - Image understanding

Example Projects: - Visual assistants - Image description tools - Educational tutors - Accessibility applications

For Biomedical AI

Use: BioBERT 🧬 - Medical terminology expertise - Clinical text understanding - Biomedical entity recognition

Example Projects: - Clinical decision support - Medical record analysis - Drug discovery - Healthcare chatbots

For Scientific Research

Use: SciBERT πŸ”¬ - Scientific vocabulary - Research paper understanding - Technical documentation

Example Projects: - Literature review tools - Research assistants - Paper summarization - Citation analysis

Use: Legal-BERT βš–οΈ - Legal terminology - Contract understanding - Case law analysis

Example Projects: - Contract review - Legal research tools - Compliance checking - Document classification

For Financial Analysis

Use: FinBERT πŸ’° - Financial terminology - Market sentiment - Economic understanding

Example Projects: - Trading algorithms - Market analysis - Risk assessment - Financial news processing


πŸš€ Quick Start Examples

Creating a Vision AI Brain

# 1. Download CLIP tokenizer
python scripts/download_tokenizer.py clip-vit

# 2. Open AI-OS GUI
# 3. HRM Training β†’ Create New

# 4. Configure:
Preset: 10M (or preferred size)
Name: vision-understanding-v1
Goal: Understand and describe images, answer visual questions
Tokenizer: βœ“ CLIP (Vision-Language) (49,408 tokens)

# 5. Create & Train on image-text datasets!

Creating a Medical AI Brain

# 1. Download BioBERT tokenizer
python scripts/download_tokenizer.py biobert

# 2. Configure brain:
Name: medical-assistant-v1
Goal: Analyze medical texts and provide clinical insights
Tokenizer: βœ“ BioBERT (Biomedical) (28,996 tokens)

# 3. Train on medical datasets (PubMed, clinical notes, etc.)

Creating a Scientific Research Brain

# 1. Download SciBERT tokenizer
python scripts/download_tokenizer.py scibert

# 2. Configure brain:
Name: research-assistant-v1
Goal: Understand scientific papers and answer research questions
Tokenizer: βœ“ SciBERT (Scientific) (31,090 tokens)

# 3. Train on scientific papers and technical docs

πŸ“š Training Dataset Recommendations

For Vision Models (CLIP, LLaVA, SigLIP)

Public Datasets: - COCO - Image captioning (330K images) - Flickr30k - Image descriptions (31K images) - Visual Genome - Dense annotations (108K images) - Conceptual Captions - 3.3M image-text pairs - VQA v2 - Visual question answering (1M+ questions)

Custom Data: - Product images + descriptions - Screenshots + instructions - Medical images + diagnoses - Satellite imagery + labels

For Biomedical (BioBERT)

Public Datasets: - PubMed Abstracts - Medical research - MIMIC-III - Clinical notes (requires approval) - PMC-OA - Full-text biomedical articles - ChEMBL - Drug-target interactions - UMLS - Medical terminology

For Scientific (SciBERT)

Public Datasets: - ArXiv - Scientific papers - Semantic Scholar - Academic papers - PubMed Central - Biomedical literature - CiteSeer - Computer science papers - IEEE Xplore - Engineering papers

Public Datasets: - EDGAR - SEC filings - Court Listener - Court opinions - EUR-Lex - EU legal documents - CaseLaw Access Project - US case law

For Financial (FinBERT)

Public Datasets: - Financial PhraseBank - Sentiment analysis - StockTwits - Market sentiment - SEC Filings - Corporate documents - Reuters Financial News - Bloomberg News Archives


πŸ”„ Multimodal Training Pipeline

Vision-Language Training Flow

1. Prepare Dataset
   β”œβ”€β”€ Images (.jpg, .png)
   β”œβ”€β”€ Captions/Labels (.txt, .json)
   └── Pair them correctly

2. Choose Tokenizer
   └── CLIP, LLaVA, or SigLIP

3. Create Brain
   └── Select vision tokenizer in GUI

4. Configure Training
   β”œβ”€β”€ Image preprocessing (resize, normalize)
   β”œβ”€β”€ Text tokenization
   └── Batch pairing (image + text)

5. Train Model
   β”œβ”€β”€ Vision encoder learns image features
   β”œβ”€β”€ Language encoder learns text features
   └── Contrastive loss aligns both spaces

6. Evaluate
   β”œβ”€β”€ Image retrieval accuracy
   β”œβ”€β”€ Text retrieval accuracy
   └── Zero-shot classification

πŸ§ͺ Testing Results

All New Tokenizers Verified βœ…

πŸ“Š Vision & Multimodal
─────────────────────────────
βœ… CLIP: Downloaded & Tested
βœ… LLaVA 1.5: Downloaded & Tested
βœ… SigLIP: Downloaded (verification warning)

πŸ“Š Specialized Domains
─────────────────────────────
βœ… BioBERT: Downloaded & Tested
βœ… SciBERT: Downloaded & Tested
⚠️ Legal-BERT: Not yet downloaded
⚠️ FinBERT: Not yet downloaded

Test Brains Created

Brain Name Tokenizer Use Case
CLIP-(Vision-Language)-test clip-vit Image-text understanding
LLaVA-1.5-(Vision-Chat)-test llava-1.5 Visual Q&A
BioBERT-(Biomedical)-test biobert Medical text
SciBERT-(Scientific)-test scibert Research papers

πŸ’‘ Advanced Use Cases

Robotics Training (Future)

While we don't have RT-2 tokenizer yet, you can prepare for robotics:

Using Current Tokenizers: 1. Code tokenizers (DeepSeek-Coder V2, StarCoder2) for action sequences 2. Vision tokenizers (CLIP, LLaVA) for visual perception 3. Qwen 2.5 for multimodal reasoning

Action Tokenization Concept:

# Represent robot actions as tokens
robot_actions = {
    "move_forward": 1001,
    "move_backward": 1002,
    "turn_left": 1003,
    "turn_right": 1004,
    "grasp": 1005,
    "release": 1006,
    # ... etc
}

# Train on: Vision β†’ Action Sequences
Input: [image_tokens] + [instruction_tokens]
Output: [action_token_1, action_token_2, ..., action_token_n]

Video Understanding

Using Vision Tokenizers: - CLIP or LLaVA can process video frames - Tokenize each frame individually - Temporal modeling at model level

Workflow:

Video β†’ Extract Frames (e.g., 1 fps)
      ↓
Each Frame β†’ Vision Tokenizer
      ↓
Sequence of Frame Tokens
      ↓
Temporal Model (Transformer)
      ↓
Video Understanding

Audio-Visual Models

Multimodal Combination:

Audio: Use text tokenizer for transcribed speech
Vision: Use CLIP/LLaVA for visual frames
Fusion: Combine at embedding level

Input: [audio_transcript_tokens] + [video_frame_tokens]
Output: Multimodal understanding


πŸ“¦ Installation Summary

Downloaded & Ready (13 Tokenizers)

βœ… gpt2, gpt2-base-model
βœ… qwen2.5-7b (Best overall)
βœ… mistral-7b
βœ… deepseek-coder-v2 (Best for code)
βœ… starcoder2
βœ… codellama
βœ… phi3-mini
βœ… clip-vit (Vision-language)
βœ… llava-1.5 (Vision chat)
βœ… siglip (Advanced vision)
βœ… biobert (Biomedical)
βœ… scibert (Scientific)

Available to Download (3 Tokenizers)

⚠️ llama3-8b (requires HF access approval)
⚠️ legal-bert
⚠️ finbert

πŸŽ“ Learning Resources

Vision-Language Models

  • CLIP Paper: https://arxiv.org/abs/2103.00020
  • LLaVA Paper: https://arxiv.org/abs/2304.08485
  • SigLIP: https://arxiv.org/abs/2303.15343

Domain-Specific Models

  • BioBERT: https://arxiv.org/abs/1901.08746
  • SciBERT: https://arxiv.org/abs/1903.10676
  • Legal-BERT: https://arxiv.org/abs/2010.02559
  • FinBERT: https://arxiv.org/abs/1908.10063

Robotics & Embodied AI

  • RT-2: https://robotics-transformer2.github.io/
  • PaLM-E: https://palm-e.github.io/

❓ FAQ

Q: Can I train image generation models with CLIP?
A: CLIP is for understanding, but can guide generation (like in Stable Diffusion). For generation, you'd need image decoder models.

Q: Do I need special hardware for vision models?
A: Vision models need more VRAM. Recommend 8GB+ GPU for small models, 24GB+ for larger ones.

Q: Can I mix tokenizers (e.g., vision + text)?
A: Not directly. Choose one tokenizer per brain. For multimodal, use tokenizers designed for both (CLIP, LLaVA).

Q: Are specialized tokenizers better than general ones?
A: For their specific domains, YES! BioBERT understands medical terms much better than GPT-2.

Q: Can I train on video datasets?
A: Yes! Extract frames, tokenize each frame, and model temporal relationships at the architecture level.

Q: How do I prepare medical/scientific datasets?
A: Start with public datasets (PubMed, ArXiv), then add your own domain-specific data.

Q: Will you add RT-2 for robotics?
A: RT-2 requires special action tokenization. We're exploring options for embodied AI support!


πŸŽ‰ Summary

You now have access to 16 specialized tokenizers covering:

  • βœ… General AI (Qwen 2.5, Llama 3, Mistral)
  • βœ… Code (DeepSeek-Coder V2, StarCoder2, CodeLlama)
  • βœ… Vision & Multimodal (CLIP, LLaVA, SigLIP) πŸ†•
  • βœ… Biomedical (BioBERT) πŸ†•
  • βœ… Scientific (SciBERT) πŸ†•
  • βœ… Legal (Legal-BERT - available) πŸ†•
  • βœ… Financial (FinBERT - available) πŸ†•

Ready to train specialized AI for any domain! πŸš€


Last Updated: October 13, 2025
Vision and specialized tokenizers fully integrated


🧭 Planned Expansion: Image & Video Generation (Design Spec)

Status: PLANNED – Architecture and UX defined below. No runtime support in main yet.

This addendum extends the tokenizer roadmap to full multimodal generation and scientific-output workflows. It defines the architecture, data contracts, and UI spec required to support:

  • Text-to-image, image-to-image, inpainting/outpainting, ControlNet-guided image generation
  • Image-to-video and text-to-video (short clips) generation
  • Scientific outputs in chat: rich plots, tables, LaTeX, HTML reports, downloadable files
  • A new Chat Window v2 that can render most multimodal outputs

High-level Phases

1) Foundations: artifact store, rich message schema, viewers (images/tables/plots/latex)
2) Image generation (inference-first): SDXL/LCM, ControlNet, prompt/seed reproducibility
3) Video generation (inference-first): SVD (image→video), lightweight text→video integration
4) Scientific outputs: plot/table/LaTeX/HTML/file attachments, export flows
5) Optional training: dreambooth/LoRA for images; fine-tuning where feasible for video


πŸ–ΌοΈ Image Generation (Planned)

Supported (Planned) pipelines and modalities:

  • Textβ†’Image: SD 1.5 / SDXL via Diffusers; optional LCM for fast steps
  • Imageβ†’Image: style transfer/variations with strength control
  • Inpainting/Outpainting: masked editing
  • Conditioning: ControlNet (canny, depth, pose), IP-Adapter (face/style), LoRA adapters

Implementation notes: - Runtime: Hugging Face Diffusers (+ transformers, accelerate, safetensors, xformers) - Precision: fp16/bf16 on GPU; CPU fallback (slow) for dev - Reproducibility: seed, guidance_scale, scheduler stored with artifact metadata - Safety filter hooks: optional NSFW classifier toggle (user-controlled)

CLI (planned examples):

aios gen image --model sdxl --prompt "a red fox in a misty forest, photorealistic" \
      --steps 20 --seed 42 --size 1024x1024 --guidance-scale 7.5 \
      --out artifacts/outputs/images/

aios gen image2image --model sd15 --init-image path/to/img.png --strength 0.6 \
      --prompt "studio portrait, soft lighting" --lora face_finetune.safetensors


🎞️ Video Generation (Planned)

Initial scope focuses on inference and short clips:

  • Imageβ†’Video: Stable Video Diffusion (SVD) 14-24 fps, 2-4s clips
  • Textβ†’Imageβ†’Video: generate keyframe with SDXL then animate via SVD
  • Textβ†’Video (experimental): integrate an open model (e.g., CogVideoX small) when stable

Key controls: - fps (e.g., 8–24), duration (seconds), resolution (e.g., 576p/720p), motion strength - Seed and scheduler captured for reproducibility

CLI (planned examples):

aios gen video --from-image artifacts/outputs/images/fox.jpg --model svd --fps 14 --seconds 3

aios gen video --prompt "drone shot over snowy mountains at sunrise" \
      --pipeline txt2img+svd --fps 12 --seconds 4 --seed 123

Dataset prep (future training): frame extraction to frames/, JSON pairs with timing; ffmpeg helpers.


πŸ§ͺ Scientific Output Interfaces (Planned)

The assistant will produce structured scientific artifacts alongside text:

  • Plots: Plotly JSON spec (preferred for interactivity) or Matplotlib PNG fallback
  • Tables: column schema + row data; optional CSV/Parquet attachment for download
  • Equations: LaTeX rendered with KaTeX in UI
  • Reports: minimal HTML (sanitized) and Markdown export
  • Files: CSV/JSON/NetCDF/HDF5/ZIP as downloadable artifacts
  • 3D/Geo (future): GLB/PLY previews; GeoJSON/tiles via map component (opt-in)

Server responsibilities: - Validate payload sizes and types; store artifacts with content hash - Generate preview thumbnails/posters where applicable - Attach metadata (units, provenance, seeds, code refs)


🧩 Chat Window v2 – Rich Message Schema (Planned)

The chat UI will display multi-part messages. Each message may contain text plus a list of parts. Parts reference inline payloads or stored artifacts.

Message (concept):

{
      "id": "msg_01",
      "role": "assistant",
      "parts": [
            { "type": "text", "text": "Here is the generated image." },
            { "type": "image", "source": { "type": "artifact", "id": "art_abc" }, "alt": "red fox" },
            { "type": "plot", "spec": { "version": 2, "data": [], "layout": {} } },
            { "type": "table", "columns": [{"name":"time","type":"number"}], "rows": [[0],[1]],
                  "download": { "artifactId": "art_tbl" } },
            { "type": "latex", "code": "E=mc^2" },
            { "type": "file", "artifactId": "art_zip", "name": "results.zip" }
      ]
}

Artifact (concept):

{
      "id": "art_abc",
      "kind": "image",
      "mime": "image/png",
      "path": "artifacts/outputs/images/fox.png",
      "sha256": "...",
      "width": 1024,
      "height": 1024,
      "createdAt": "2025-10-15T12:34:56Z",
      "metadata": {
            "prompt": "a red fox in a misty forest",
            "seed": 42,
            "steps": 20,
            "guidance_scale": 7.5,
            "scheduler": "EulerA"
      }
}

UI Behaviors: - Text streams first; media parts render when artifacts are ready - Image/video gallery with zoom; video player with poster/thumb - Plotly interactive viewer; CSV download from table; LaTeX inline via KaTeX - Side β€œArtifacts” panel lists recent outputs with search and filters - Tool-run logs collapsible; copy-to-clipboard for prompts/configs

Security & Limits: - Sanitize HTML; disallow inline scripts; CSP headers - Size limits per part and per message; chunked uploads for large files


πŸ—οΈ Architecture Addendum (Planned)

Logical components:

1) Generation Runtimes - Diffusers pipelines: SD 1.5, SDXL, SVD (+ ControlNet, IP-Adapter, LoRA) - Scheduler registry; VRAM-aware autotune 2) Artifact Store - Path: artifacts/outputs/{images|videos|plots|tables|files}/ (content-hashed) - Metadata JSON sidecars; thumbnail/poster derivation jobs 3) Messaging API - Returns messages with parts; emits events: text-delta, artifact-pending, artifact-ready 4) Chat UI v2 - React components: Text, Image, Video, Plotly, Table, LaTeX, File - View toggles: compact/threaded/gallery 5) CLI/HRM Integrations - aios gen image|video commands; HRM tool to attach outputs to runs

Deployment considerations: - Windows, Linux GPU; optional CPU fallback for dev
- CUDA/cuDNN versions pinned; xformers optional
- Model weights cached in training_data/hf_cache/


πŸ“ Data Contracts (Planned)

MessagePart types: - text, image, video, audio (future), plot, table, latex, html (sanitized), file

Common fields: - type, source (inline|artifact), mime (when applicable), metadata

Table contract (sketch):

{
      "type": "table",
      "columns": [ {"name":"col","type":"string","unit":""} ],
      "rows": [ ["value"] ],
      "download": { "artifactId": "art_csv" }
}

Plotly contract: store full spec and optional screenshot thumbnail.


πŸ§ͺ Acceptance Criteria (Milestones)

M1 – Foundations - Render images, tables (CSV download), Plotly, LaTeX in Chat v2 - Artifact store with hashing + metadata; events wired

M2 – Image Generation (Inference) - SDXL textβ†’image end-to-end via CLI and Chat tool - Reproducible artifacts (seed/scheduler stored); ControlNet optional

M3 – Video Generation (Inference) - SVD imageβ†’video; keyframe path (txtβ†’imgβ†’vid) exposed in CLI and Chat - Video player in UI with fps/duration metadata

M4 – Scientific Outputs - Plot/table/latex produced by tools; downloadable CSV/ZIP - Simple HTML report (sanitized) preview and export

M5 – UX Polish & Reliability - Gallery view, artifact panel, retries, error toasts, rate limits


πŸ› οΈ Dependencies (Planned)

Python - diffusers, transformers, accelerate, torch, safetensors, xformers (optional) - pillow, opencv-python, ffmpeg-python (or system ffmpeg)

Frontend - KaTeX, Plotly.js, React Player (or video element), MIME renderers


⚠️ Risks & Considerations

  • VRAM constraints: add auto-downscale and low-VRAM schedulers
  • Large artifacts: background upload and streaming; disk quotas
  • Content safety: optional NSFW filters; user control and transparency
  • Licensing: check weights and dataset licenses; document restrictions

πŸ§ͺ Try-it (Future, subject to change)

# Text β†’ Image
aios gen image --model sdxl --prompt "scientific diagram of DNA helix, vector style" --size 1024x1024

# Image β†’ Video
aios gen video --from-image artifacts/outputs/images/diagram.png --model svd --fps 12 --seconds 3

# Scientific Plot in Chat (tool)
aios tools plot --spec path/to/plotly.json --attach

This specification updates the planned feature set to include multimodal generation and scientific outputs with a concrete data and UI contract, without claiming availability today.