MoE-Lightning Integration¶
Overview¶
This document outlines the plan for integrating MoE-Lightning into the AI-OS project to enable high-throughput Mixture-of-Experts (MoE) inference on memory-constrained GPUs. MoE-Lightning is a state-of-the-art system that achieves up to 10.3× higher throughput than existing solutions through novel CPU-GPU-I/O pipeline scheduling and a Hierarchical Roofline Model for performance optimization.
Paper Reference: MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs
Created: November 8, 2025 Status: Planning Phase Priority: High Complexity: High
Table of Contents¶
- Motivation
- Technical Background
- Core Components
- Integration Architecture
- Implementation Phases
- Technical Requirements
- Performance Targets
- Risk Assessment
- Testing Strategy
- Future Enhancements
- References
Motivation¶
Problem Statement¶
AI-OS currently faces significant challenges when running large Mixture-of-Experts models on memory-constrained hardware:
- Limited GPU Memory: Models like Mixtral 8x7B (~47GB) and Mixtral 8x22B (>256GB) cannot fit entirely in consumer-grade GPU memory (typically 16-24GB)
- Poor Resource Utilization: Existing offloading solutions (DeepSpeed-Inference, FlexGen) suffer from:
- GPU idle time while waiting for data transfers
- Inefficient overlap of computation and I/O
- Suboptimal batch size selection
- Accessibility Gap: High-end GPUs are expensive and unavailable to most users who want to experiment with large MoE models
Benefits of Integration¶
- Dramatic Throughput Improvements: 3.5-10.3× higher throughput on single GPU compared to existing systems
- Memory Efficiency: Run models with 2-3× less CPU memory while maintaining peak throughput
- Better Hardware Utilization: Efficiently utilize CPU, GPU, and memory bandwidth simultaneously
- Democratization: Enable more users to run large MoE models on consumer hardware
- Super-linear Scaling: 2.77-3.38× throughput improvement when scaling from 2 to 4 GPUs
- Compatibility: Works with popular MoE models (Mixtral 8x7B, Mixtral 8x22B, DBRX)
Technical Background¶
Mixture of Experts (MoE) Architecture¶
MoE models use a gating mechanism to route inputs to specialized expert sub-networks: - Only a subset of experts are activated per token (sparse activation) - Provides better parameter efficiency than dense models - Significantly larger memory footprint due to multiple expert FFNs - Example: Mixtral 8x7B has 8 experts per layer, activates top-2
Key Innovations in MoE-Lightning¶
1. CGOPipe (CPU-GPU-I/O Pipeline Schedule)¶
Problem: Traditional approaches transfer data sequentially, causing bubbles in the pipeline where resources sit idle.
Solution: Fine-grained pipelining that overlaps: - GPU computation (post-attention, pre-attention tasks) - CPU computation (attention with softmax) - I/O transfers (weights, hidden states, KV cache)
Key Technique - Weights Paging:
- Chunk weights into n pages (where n = number of micro-batches)
- Interleave weight transfers with intermediate result transfers
- Enable parallel transfers in opposite directions (CPU→GPU and GPU→CPU)
2. HRM (Hierarchical Roofline Model)¶
Problem: Existing performance models don't account for heterogeneous resources and cross-level data movement.
Solution: Extended Roofline Model with multiple memory hierarchies:
Performance Equation:
Where:
- P_peak^i: Peak compute at level i (GPU/CPU)
- B_peak^i: Memory bandwidth at level i
- B_peak^(j,i): Bandwidth from level j to level i (e.g., CPU to GPU)
- I_x^i: Operational intensity of computation x at level i
Turning Points: The model identifies critical operational intensities that determine: - When to perform computation on CPU vs GPU - When the system is GPU memory-bound vs CPU-GPU bandwidth-bound - Optimal batch size and micro-batch size combinations
Balance Point:
This represents the optimal configuration where all resources are fully utilized.3. Tensor Parallelism¶
Unlike pipeline parallelism (scales with model depth), MoE-Lightning uses tensor parallelism: - Scales with layer size - Increases total GPU memory capacity linearly - Increases GPU memory bandwidth linearly - Achieves super-linear scaling in practice (3.38× with 4 GPUs vs 2 GPUs)
Performance Analysis Insights¶
Attention Block¶
- Operational intensity independent of batch size
- For context length 512 on L4 GPU: CPU attention is 3-4× faster than KV cache transfer
- CPU attention becomes bottleneck at large batch sizes and long context lengths
MoE FFN Block¶
- Operational intensity increases with batch size (more computation per weight access)
- Memory-bound in decode stage for typical micro-batch sizes
- Benefits most from weight offloading strategies
Core Components¶
Component 1: CGOPipe Scheduler¶
Purpose: Implement fine-grained CPU-GPU-I/O pipeline scheduling
Key Features:
# Pseudo-code for CGOPipe execution order
for decode_step in range(generation_length):
# Prologue (first 2 micro-batches)
for j in [1, 2]:
PreAttn(layer=1, microbatch=j)
OffloadQKV(layer=1, microbatch=j)
CPUAttn(layer=1, microbatch=j)
WeightsCPUtoPin(layer=2, microbatch=j)
# Main pipeline (steady state)
for layer in range(1, num_layers):
for microbatch in range(1, num_microbatches + 1):
# Parallel execution
PostAttn(layer, microbatch) # GPU
PreAttn(layer, microbatch+1) # GPU
CPUAttn(layer, microbatch+1) # CPU
WeightsPinToGPU(layer+1, page) # I/O
Implementation Requirements: - Asynchronous task execution with CUDA streams - Synchronization primitives for data dependencies - Weight paging system with page table management - Dual-buffer for weight transfers (2× layer weight size)
Component 2: HRM Performance Model¶
Purpose: Find optimal execution policies based on hardware, model, and workload
Policy Search Space:
@dataclass
class InferencePolicy:
N: int # Batch size
μ: int # Micro-batch size
A_g: bool # Perform attention on GPU?
F_g: bool # Perform FFN on GPU?
r_w: float # Ratio of weights on GPU (0-1)
r_c: float # Ratio of KV cache on GPU (0-1)
Optimization Target:
def optimize_policy(hardware, model, workload):
"""
Minimize per-layer latency while satisfying memory constraints
T(M, H, W, P) = max(comm_cpu_to_gpu, T_cpu, T_gpu)
where:
- T_cpu = T_attn_cpu + T_ffn_cpu
- T_gpu = T_attn_gpu + T_ffn_gpu
- comm_cpu_to_gpu = bytes_transferred / bandwidth_cpu_to_gpu
Subject to:
- GPU_memory_used ≤ GPU_memory_capacity
- CPU_memory_used ≤ CPU_memory_capacity
"""
# Use MILP solver for policy search
# Takes <1 minute for offline optimization
Model Configuration: - Hardware: GPU/CPU memory, bandwidth, FLOPS - Model: Layers, dimensions, expert count, data types - Workload: Average prompt length, generation length
Component 3: Memory Management System¶
Weight Paging:
class WeightPagingManager:
"""
Manages paged weight transfers with double buffering
"""
def __init__(self, layer_weight_size, num_pages):
# Allocate 2× layer weight buffer on GPU
self.weight_buffer_size = 2 * layer_weight_size
self.num_pages = num_pages
self.page_size = layer_weight_size / num_pages
# Page table for MoE expert routing
self.page_table = {}
def transfer_page(self, layer, page_id, stream):
# CPU DRAM → CPU Pinned Memory
self.copy_to_pinned_async(layer, page_id, stream)
# CPU Pinned Memory → GPU (overlapped)
self.copy_to_gpu_async(layer, page_id, stream)
KV Cache Management: - Store all KV cache on CPU after prefill stage - Transfer to GPU only for attention computation (if GPU attention is selected) - For CPU attention: keep on CPU, pass hidden states instead
Component 4: CPU Attention Kernels¶
Purpose: High-performance Grouped Query Attention on CPU
Implementation: - Based on Intel MKL library optimizations - SIMD vectorization for matrix operations - Cache-friendly memory access patterns - Multi-threaded execution
Performance Characteristics: - 3-4× faster than KV cache transfer on typical hardware - Becomes bottleneck at very large batch sizes (>256) or long contexts (>2048)
Component 5: Request Batching System¶
Purpose: Handle variable-length prompts efficiently without padding
Algorithm:
def balanced_batching(requests, num_microbatches, target_batch_size):
"""
Distribute requests across micro-batches to balance token counts
Returns micro-batches with roughly equal total tokens
"""
# Sort requests by length (descending)
sorted_requests = sorted(requests, key=lambda r: r.length, reverse=True)
microbatches = [[] for _ in range(num_microbatches)]
token_counts = [0] * num_microbatches
# Greedy assignment to micro-batch with fewest tokens
for request in sorted_requests:
min_idx = token_counts.index(min(token_counts))
microbatches[min_idx].append(request)
token_counts[min_idx] += request.length
return microbatches
Integration Architecture¶
System Architecture Diagram¶
┌─────────────────────────────────────────────────────────────┐
│ AI-OS Core │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ MoE-Lightning Integration Layer │ │
│ ├───────────────────────────────────────────────────────┤ │
│ │ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌─────────────┐ │ │
│ │ │ HRM Model │ │ CGOPipe │ │ Policy │ │ │
│ │ │ Optimizer │←→│ Scheduler │←→│ Cache │ │ │
│ │ └──────────────┘ └──────────────┘ └─────────────┘ │ │
│ │ ↓ ↓ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌─────────────┐ │ │
│ │ │ Weight │ │ Request │ │ CPU Attn │ │ │
│ │ │ Paging │ │ Batching │ │ Kernels │ │ │
│ │ └──────────────┘ └──────────────┘ └─────────────┘ │ │
│ └───────────────────────────────────────────────────────┘ │
│ ↕ │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ Existing AI-OS Components │ │
│ ├───────────────────────────────────────────────────────┤ │
│ │ • HuggingFace Model Loading │ │
│ │ • vLLM/SGLang Integration │ │
│ │ • Memory Estimation System │ │
│ │ • Expert Manager │ │
│ └───────────────────────────────────────────────────────┘ │
│ ↕ │
│ ┌───────────────────────────────────────────────────────┐ │
│ │ Hardware Abstraction Layer │ │
│ ├───────────────────────────────────────────────────────┤ │
│ │ GPU (CUDA) │ CPU (MKL) │ Memory (Pinned/Paged) │ │
│ └───────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
Integration Points¶
1. Model Loading Layer¶
- Extend existing HuggingFace model loading in
aios/brain.py - Detect MoE architecture (Mixtral, DBRX, DeepSeek-MoE)
- Configure weight storage strategy (GPU/CPU split based on policy)
2. Inference Engine Layer¶
- New module:
aios/inference/moe_lightning/ - Interface with existing inference systems (vLLM, SGLang)
- Provide unified API for MoE model inference
3. Memory Management Layer¶
- Integrate with existing memory estimation (
artifacts/memory_estimation/) - Extend GPU memory tracking
- Add CPU memory and pinned memory tracking
4. CLI Integration¶
- Add commands to
aios/cli/aios.py:
5. Configuration Layer¶
- New config file:
config/moe_lightning.yaml - Hardware profiles for common GPU configurations (T4, L4, A100, etc.)
- Model-specific optimization profiles
Implementation Phases¶
Phase 1: Foundation & Research (Weeks 1-3)¶
Objectives: - Deep dive into MoE-Lightning paper and codebase - Set up development environment - Implement basic prototype
Tasks: 1. Code Analysis - Study MoE-Lightning reference implementation (if available) - Analyze vLLM and SGLang MoE support - Document API interfaces and extension points
- Prototype Development
- Implement basic HRM model for simple 2-level hierarchy (CPU/GPU)
- Create simplified weight paging mechanism
-
Benchmark baseline performance with existing systems
-
Environment Setup
- Configure test environments with various GPU configs (T4, L4)
- Set up profiling tools (NVIDIA Nsight, Intel VTune)
- Prepare test datasets (MTBench, HELM benchmarks)
Deliverables: - Technical design document with architecture diagrams - Proof-of-concept code demonstrating HRM policy optimization - Baseline performance benchmarks
Success Criteria: - HRM model correctly predicts bottleneck resources - Prototype shows measurable improvement over naive offloading - Development environment ready for full implementation
Phase 2: Core Components Implementation (Weeks 4-8)¶
Objectives: - Implement CGOPipe scheduler - Develop weight paging system - Create CPU attention kernels
Tasks:
2.1 HRM Performance Model (Week 4-5)¶
# aios/inference/moe_lightning/hrm/model.py
class HierarchicalRooflineModel:
"""
Performance model for heterogeneous MoE inference
"""
def __init__(self, hardware_config, model_config):
self.hw = hardware_config
self.model = model_config
def estimate_latency(self, policy: InferencePolicy) -> float:
"""Estimate per-layer decode latency"""
T_comm = self._compute_communication_time(policy)
T_cpu = self._compute_cpu_time(policy)
T_gpu = self._compute_gpu_time(policy)
return max(T_comm, T_cpu, T_gpu)
def optimize_policy(self, workload_config) -> InferencePolicy:
"""Use MILP to find optimal policy"""
# Implement using scipy.optimize or CVXPY
pass
2.2 CGOPipe Scheduler (Week 5-6)¶
# aios/inference/moe_lightning/scheduler/cgopipe.py
class CGOPipeScheduler:
"""
CPU-GPU-I/O Pipeline Scheduler with weights paging
"""
def __init__(self, policy: InferencePolicy, model, device_manager):
self.policy = policy
self.model = model
self.dm = device_manager
# Initialize CUDA streams
self.gpu_stream = torch.cuda.Stream()
self.transfer_stream = torch.cuda.Stream()
# Initialize weight paging
self.weight_pager = WeightPagingManager(
layer_weight_size=model.layer_size,
num_pages=policy.μ
)
def execute_decode_step(self, microbatches):
"""Execute one decode step with pipelined scheduling"""
# Implement Algorithm 1 from paper
pass
2.3 Weight Paging System (Week 6-7)¶
# aios/inference/moe_lightning/memory/weight_paging.py
class WeightPagingManager:
"""
Manages paged transfers of model weights between CPU and GPU
"""
def __init__(self, layer_weight_size, num_pages):
self.page_size = layer_weight_size // num_pages
self.num_pages = num_pages
# Allocate pinned memory buffer
self.pinned_buffer = self._allocate_pinned_buffer()
# Page table for expert routing
self.page_table = PageTable()
def prefetch_page(self, layer_id, page_id, stream):
"""Asynchronously prefetch weight page"""
# CPU DRAM → CPU Pinned (background thread)
self._copy_to_pinned_async(layer_id, page_id)
# CPU Pinned → GPU (CUDA stream)
self._copy_to_gpu_async(layer_id, page_id, stream)
2.4 CPU Attention Kernels (Week 7-8)¶
# aios/inference/moe_lightning/kernels/cpu_attention.py
import intel_extension_for_pytorch as ipex
class CPUGroupedQueryAttention:
"""
Optimized CPU attention using Intel MKL
"""
def __init__(self, num_heads, num_kv_heads, head_dim):
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
# Configure MKL threads
torch.set_num_threads(self._get_optimal_threads())
@torch.jit.script
def forward(self, query, key_cache, value_cache, seq_lens):
"""
Compute attention on CPU with GQA optimization
Args:
query: [batch, num_heads, head_dim]
key_cache: [batch, max_seq_len, num_kv_heads, head_dim]
value_cache: [batch, max_seq_len, num_kv_heads, head_dim]
seq_lens: [batch]
"""
# Implement optimized GQA with SIMD vectorization
pass
Deliverables: - Fully functional HRM model with policy optimizer - Working CGOPipe scheduler with async execution - CPU attention kernels matching or exceeding KV cache transfer speed - Weight paging system with double buffering
Success Criteria: - HRM policy optimizer runs in <1 minute for typical configs - CGOPipe achieves >80% resource utilization (GPU, CPU, I/O) - CPU attention is 3-4× faster than KV cache transfer - Weight paging reduces pipeline bubbles by >50%
Phase 3: Integration & Optimization (Weeks 9-12)¶
Objectives: - Integrate components into AI-OS - Implement request batching - Optimize end-to-end performance
Tasks:
3.1 AI-OS Integration (Week 9-10)¶
- Create
aios/inference/moe_lightning/module structure - Implement unified inference API
- Add MoE detection logic to model loading
- Extend CLI with MoE-Lightning commands
3.2 Request Batching System (Week 10)¶
# aios/inference/moe_lightning/batching/request_batcher.py
class VariableLengthBatcher:
"""
Batch variable-length requests without padding
"""
def create_microbatches(self, requests, policy):
"""
Implement Algorithm 2 from paper
Balances token distribution across micro-batches
"""
pass
3.3 Tensor Parallelism Support (Week 11)¶
# aios/inference/moe_lightning/distributed/tensor_parallel.py
class TensorParallelExecutor:
"""
Execute MoE inference with tensor parallelism across GPUs
"""
def __init__(self, num_gpus, policy):
self.num_gpus = num_gpus
self.device_mesh = self._create_device_mesh()
# Scale policy parameters for multiple GPUs
self.adjusted_policy = self._adjust_policy_for_tp(policy)
3.4 Performance Profiling & Optimization (Week 11-12)¶
- Profile with NVIDIA Nsight Systems
- Identify bottlenecks in data transfer and synchronization
- Optimize kernel launch overhead
- Tune thread counts for CPU operations
- Implement caching for policy optimization results
Deliverables: - Complete integration with AI-OS inference pipeline - Variable-length batching system - Tensor parallelism for multi-GPU setups - Performance optimization report
Success Criteria: - API is compatible with existing AI-OS inference workflows - Variable-length batching provides 2-3× memory savings vs padding - Tensor parallelism achieves >2.5× speedup on 4 GPUs vs 2 GPUs - End-to-end latency overhead <5% compared to direct execution
Phase 4: Testing & Validation (Weeks 13-15)¶
Objectives: - Comprehensive testing across models and hardware - Validate performance claims - Ensure numerical correctness
Tasks:
4.1 Correctness Testing (Week 13)¶
- Compare outputs with reference implementations (vLLM, transformers)
- Test with multiple MoE architectures (Mixtral, DBRX, DeepSeek-MoE)
- Validate attention correctness (CPU vs GPU implementation)
- Memory safety checks (no leaks, proper cleanup)
4.2 Performance Benchmarking (Week 14)¶
# tests/benchmarks/test_moe_lightning_performance.py
class MoELightningBenchmarks:
"""
Comprehensive performance benchmarks
"""
def benchmark_throughput(self, model, hardware, workload):
"""
Measure end-to-end throughput for various configurations
Compare against:
- FlexGen
- DeepSpeed-Inference
- vLLM (if fits in memory)
"""
pass
def benchmark_memory_efficiency(self, model, hardware):
"""
Measure CPU/GPU memory usage at peak throughput
"""
pass
def benchmark_scaling(self, model, num_gpus_list):
"""
Test tensor parallelism scaling efficiency
"""
pass
Test Matrices:
| Model | Hardware | Workload | Expected Speedup |
|---|---|---|---|
| Mixtral 8x7B | 1×T4 (16GB) | MTBench (gen_len=128) | 3.5× vs FlexGen |
| Mixtral 8x7B | 1×L4 (24GB) | HELM Reasoning | 5× vs FlexGen |
| Mixtral 8x22B | 2×T4 (32GB) | MTBench (gen_len=64) | 2.8× vs FlexGen |
| Mixtral 8x22B | 4×T4 (64GB) | MTBench (gen_len=64) | Super-linear scaling |
| DBRX | 4×T4 (64GB) | MTBench (gen_len=128) | 2.1-2.8× scaling |
4.3 Stress Testing (Week 15)¶
- Long-running inference jobs (24+ hours)
- Extreme batch sizes (pushing memory limits)
- Error handling and recovery
- Multi-user concurrent requests
Deliverables: - Comprehensive test suite with >90% coverage - Benchmark results report comparing to baseline systems - Validated correctness across all supported models - Stress test results and reliability metrics
Success Criteria: - All correctness tests pass with numerical differences <1e-5 - Achieve paper's reported speedups (within 10% margin) - No memory leaks or crashes in 24-hour stress tests - Error recovery works for common failure modes
Phase 5: Documentation & Deployment (Weeks 16-17)¶
Objectives: - Create comprehensive documentation - Prepare for production deployment - Train users and gather feedback
Tasks:
5.1 User Documentation (Week 16)¶
# docs/guide/moe_lightning_quickstart.md
## MoE-Lightning Quick Start
Learn how to run large MoE models on consumer GPUs with MoE-Lightning.
### Installation
### Basic Usage
### Configuration Guide
### Performance Tuning
### Troubleshooting
5.2 Developer Documentation (Week 16)¶
- API reference documentation
- Architecture diagrams and design decisions
- Contribution guidelines for MoE-Lightning components
- Performance profiling guide
5.3 Example Notebooks (Week 17)¶
# examples/moe_lightning_mixtral.ipynb
"""
Running Mixtral 8x7B on a Single T4 GPU
This notebook demonstrates:
1. Model loading and configuration
2. Policy optimization for your hardware
3. Running inference with MoE-Lightning
4. Comparing performance to baseline systems
"""
5.4 Deployment Preparation (Week 17)¶
- Docker images with optimized dependencies
- Installation scripts for common platforms
- Hardware compatibility matrix
- Known issues and workarounds
Deliverables: - Complete user and developer documentation - Example notebooks and tutorials - Deployment artifacts (Docker images, installers) - Performance tuning guide
Success Criteria: - Documentation covers all use cases and configurations - New users can run first inference within 15 minutes - Examples run successfully on documented hardware - Docker deployment works on Ubuntu 20.04/22.04 and Windows 11
Phase 6: Advanced Features & Extensions (Weeks 18-20)¶
Objectives: - Add advanced optimizations - Support additional models and hardware - Integrate with AI-OS ecosystem
Tasks:
6.1 Extended Hardware Support (Week 18)¶
- AMD GPU support (ROCm)
- Apple Silicon support (MPS backend)
- Intel GPU support (oneAPI)
- Multi-node distributed inference
6.2 Advanced Optimizations (Week 19)¶
- KV cache quantization (INT4, INT8)
- Sparse attention patterns
- Expert caching for common routing patterns
- Dynamic policy adjustment based on runtime metrics
6.3 AI-OS Ecosystem Integration (Week 20)¶
- Integration with Expert Manager for MoE expert tracking
- Memory estimation updates for MoE-Lightning
- Dream system integration for synthetic data generation
- CLI enhancements for interactive optimization
Deliverables: - Multi-platform hardware support - Advanced optimization features - Deep integration with AI-OS features
Success Criteria: - Works on at least 2 additional hardware platforms - Advanced optimizations provide additional 1.2-1.5× speedup - Seamless integration with existing AI-OS workflows
Technical Requirements¶
Hardware Requirements¶
Minimum Configuration¶
- GPU: NVIDIA T4 (16GB) or equivalent
- CPU: 8-core, 2.0+ GHz
- RAM: 64GB DDR4
- Storage: 500GB SSD for model weights
- PCIe: Gen3 x16 for optimal CPU-GPU bandwidth
Recommended Configuration¶
- GPU: NVIDIA L4 (24GB) or 2× T4 (32GB total)
- CPU: 16-core, 2.5+ GHz (e.g., Intel Xeon)
- RAM: 128GB DDR4 or better
- Storage: 1TB NVMe SSD
- PCIe: Gen4 x16
Optimal Configuration¶
- GPU: 4× NVIDIA T4 (64GB) or 2× A100 (80GB each)
- CPU: 32-core, 3.0+ GHz
- RAM: 256GB+ DDR5
- Storage: 2TB NVMe SSD RAID
- Network: 100Gbps for multi-node (future)
Software Requirements¶
Core Dependencies¶
# pyproject.toml additions
[project.dependencies]
torch = ">=2.1.0"
intel-extension-for-pytorch = ">=2.1.0" # For CPU kernels
vllm = ">=0.2.0" # For MoE support
sglang = ">=0.1.0" # For structured generation
scipy = ">=1.10.0" # For optimization
cvxpy = ">=1.4.0" # For MILP solver (optional)
System Requirements¶
- CUDA: 12.1+ (for NVIDIA GPUs)
- cuDNN: 8.9+
- Intel MKL: 2023.0+ (for CPU operations)
- Python: 3.10+
- OS: Ubuntu 20.04+, Windows 11, or macOS 13+
Model Support¶
Supported Architectures¶
- Mixtral Family
- Mixtral 8x7B (~47GB)
-
Mixtral 8x22B (~141GB)
-
DBRX
-
DBRX 132B (16 experts)
-
DeepSeek-MoE
- DeepSeek-MoE 16B
-
DeepSeek-MoE 145B
-
Future Support
- Custom MoE architectures
- Dense model fallback mode
Model Format Support¶
- HuggingFace Transformers format
- SafeTensors format (preferred)
- GGUF format (via conversion)
Performance Targets¶
Throughput Targets¶
Based on paper results, we target the following throughput improvements:
Single GPU (T4 16GB)¶
| Workload | Baseline (FlexGen) | Target (MoE-Lightning) | Speedup |
|---|---|---|---|
| MTBench (gen=32) | 6.5 tok/s | 22.8 tok/s | 3.5× |
| MTBench (gen=128) | 9.5 tok/s | 30.1 tok/s | 3.2× |
| HELM Reasoning | 16.9 tok/s | 26.3 tok/s | 1.6× |
| HELM Summarization | 2.6 tok/s | 4.5 tok/s | 1.7× |
Single GPU (L4 24GB)¶
| Workload | Baseline (FlexGen) | Target (MoE-Lightning) | Speedup |
|---|---|---|---|
| MTBench (gen=128) | 20.7 tok/s | 105.3 tok/s | 5.1× |
| HELM Reasoning | 50.1 tok/s | 105.3 tok/s | 2.1× |
Multi-GPU (4×T4 64GB)¶
| Model | 2×T4 | 4×T4 | Scaling Factor |
|---|---|---|---|
| Mixtral 8x22B | 25.3 tok/s | 70.2 tok/s | 2.77× |
| DBRX | 22.1 tok/s | 58.3 tok/s | 2.64× |
Memory Efficiency Targets¶
| Metric | Target | Baseline |
|---|---|---|
| CPU Memory at Peak Throughput | 100GB | 200GB+ |
| GPU Memory Utilization | >85% | 60-70% |
| I/O Bandwidth Utilization | >90% | 50-60% |
| Pipeline Bubble Reduction | >50% | N/A |
Latency Targets¶
| Phase | Target | Acceptable Range |
|---|---|---|
| Policy Optimization | <1 minute | <5 minutes |
| Model Loading | <30 seconds | <60 seconds |
| First Token Latency | <2 seconds | <5 seconds |
| Per-token Latency (decode) | <100ms | <200ms |
Risk Assessment¶
Technical Risks¶
Risk 1: Performance Below Targets¶
Probability: Medium
Impact: High
Description: Achieved performance doesn't match paper's reported improvements
Mitigation: - Start with exact replication of paper's test setup - Profile extensively to identify bottlenecks - Engage with paper authors for implementation guidance - Have fallback to incremental improvements (e.g., 2× instead of 10×)
Risk 2: Hardware Compatibility Issues¶
Probability: Medium
Impact: Medium
Description: CPU attention or weight paging doesn't work on all hardware
Mitigation: - Test on multiple hardware configurations early - Implement fallback to GPU-only execution - Use platform-agnostic libraries where possible - Maintain compatibility matrix in documentation
Risk 3: Memory Management Complexity¶
Probability: High
Impact: High
Description: Memory leaks or fragmentation under high load
Mitigation: - Extensive memory profiling (valgrind, CUDA sanitizers) - Implement comprehensive cleanup logic - Use smart pointers and RAII patterns - Regular stress testing during development
Risk 4: Integration Conflicts¶
Probability: Medium
Impact: Medium
Description: Conflicts with existing AI-OS inference systems
Mitigation: - Design clean interface boundaries - Make integration opt-in initially - Comprehensive integration testing - Version compatibility testing
Project Risks¶
Risk 5: Scope Creep¶
Probability: High
Impact: Medium
Description: Feature requests expand beyond core MoE-Lightning
Mitigation: - Clearly define Phase 1-3 deliverables as MVP - Defer advanced features to Phase 6 - Regular scope reviews with stakeholders - Maintain feature backlog for future work
Risk 6: Resource Constraints¶
Probability: Medium
Impact: High
Description: Insufficient GPU resources for testing
Mitigation: - Use cloud resources (GCP, AWS) for expensive tests - Prioritize tests on available hardware - Implement simulation mode for policy testing - Partner with organizations with GPU access
Risk 7: Dependency Changes¶
Probability: Medium
Impact: Medium
Description: Breaking changes in PyTorch, vLLM, or other dependencies
Mitigation: - Pin dependency versions initially - Monitor upstream changes - Contribute to upstream projects - Maintain compatibility layer
Testing Strategy¶
Unit Testing¶
Coverage Target: >90% for core components
# tests/unit/test_hrm_model.py
class TestHierarchicalRooflineModel:
def test_compute_roofs(self):
"""Test compute and memory roof calculations"""
def test_turning_points(self):
"""Test turning point identification"""
def test_policy_optimization(self):
"""Test MILP policy search"""
def test_memory_constraints(self):
"""Test policy respects memory limits"""
# tests/unit/test_cgopipe.py
class TestCGOPipeScheduler:
def test_async_execution(self):
"""Test asynchronous task execution"""
def test_synchronization(self):
"""Test data dependency enforcement"""
def test_weight_paging(self):
"""Test weight page scheduling"""
# tests/unit/test_cpu_attention.py
class TestCPUAttention:
def test_correctness(self):
"""Compare output with reference implementation"""
def test_performance(self):
"""Verify speedup vs KV cache transfer"""
Integration Testing¶
# tests/integration/test_moe_lightning_inference.py
class TestMoELightningInference:
def test_mixtral_8x7b_single_gpu(self):
"""Test Mixtral 8x7B on single T4"""
def test_mixtral_8x22b_multi_gpu(self):
"""Test Mixtral 8x22B on multiple GPUs"""
def test_dbrx_inference(self):
"""Test DBRX model"""
def test_variable_length_batching(self):
"""Test with mixed prompt lengths"""
Performance Testing¶
# tests/performance/test_throughput.py
class TestThroughput:
@pytest.mark.benchmark
def test_mtbench_t4(self):
"""Benchmark MTBench on T4 GPU"""
assert throughput > 22.8 # tokens/sec
@pytest.mark.benchmark
def test_helm_reasoning_l4(self):
"""Benchmark HELM reasoning on L4"""
assert throughput > 105.3 # tokens/sec
@pytest.mark.benchmark
def test_scaling_4xT4(self):
"""Test super-linear scaling"""
scaling_factor = throughput_4gpu / throughput_2gpu
assert scaling_factor > 2.5
Correctness Testing¶
# tests/correctness/test_numerical_accuracy.py
class TestNumericalAccuracy:
def test_cpu_vs_gpu_attention(self):
"""Verify CPU attention matches GPU"""
max_diff = compute_max_difference(cpu_output, gpu_output)
assert max_diff < 1e-5
def test_vs_vllm_reference(self):
"""Compare outputs with vLLM"""
assert outputs_match(moe_lightning_output, vllm_output)
Stress Testing¶
# tests/stress/test_reliability.py
class TestReliability:
def test_24_hour_continuous_inference(self):
"""Run inference for 24 hours"""
def test_memory_leak_detection(self):
"""Monitor memory usage over 1000 batches"""
def test_concurrent_requests(self):
"""Handle 100 concurrent requests"""
Future Enhancements¶
Short-term (6 months)¶
- Flash Attention Integration
- Integrate Flash Attention 2/3 for GPU attention
- Further reduce memory footprint
-
Improve attention performance
-
Quantization Support
- INT8/INT4 weight quantization
- KV cache quantization
-
GPTQ/AWQ integration
-
Speculative Decoding
- Use smaller MoE model as draft
-
Improve latency for interactive use cases
-
Expert Caching
- Cache frequently activated experts on GPU
- Dynamic expert placement based on routing patterns
Mid-term (12 months)¶
- Multi-Node Distributed Inference
- Pipeline parallelism across nodes
- Expert parallelism
-
Optimize for cluster environments
-
Continuous Batching
- Orca-style continuous batching
-
Improve throughput for serving workloads
-
Adaptive Policy Selection
- Runtime policy adjustment
- Workload-aware optimization
-
Reinforcement learning for policy search
-
AMD/Intel GPU Support
- ROCm backend for AMD GPUs
- OneAPI backend for Intel GPUs
- Multi-vendor heterogeneous execution
Long-term (18+ months)¶
- Automatic Model Parallelism
- Automatic sharding for arbitrary MoE sizes
- Mixed expert and tensor parallelism
-
Cost-aware placement optimization
-
Disk Offloading
- NVMe SSD integration for very large models
- Intelligent prefetching
-
Compression for disk storage
-
Custom CUDA Kernels
- Fused MoE kernels
- Optimized expert routing
-
Custom attention implementations
-
Neural Architecture Search for MoE
- Automatic expert configuration
- Router optimization
- Efficient expert specialization
Success Metrics¶
Technical Metrics¶
| Metric | Target | Method |
|---|---|---|
| Throughput vs FlexGen | 3.5-10× | Benchmark comparison |
| Memory efficiency | 2-3× less CPU RAM | Memory profiling |
| GPU utilization | >85% | NVIDIA profiler |
| I/O utilization | >90% | Bandwidth monitoring |
| Scaling efficiency (4 GPUs) | >2.5× vs 2 GPUs | Multi-GPU benchmarks |
| Policy search time | <1 minute | Timer measurement |
| First token latency | <2 seconds | Latency profiling |
Project Metrics¶
| Metric | Target | Method |
|---|---|---|
| Code coverage | >90% | pytest-cov |
| Documentation coverage | 100% of public APIs | Doc review |
| User adoption | 50+ users in first month | Analytics |
| Bug reports | <5 critical bugs | Issue tracking |
| Performance regression | <5% | CI/CD benchmarks |
| Community contributions | 5+ contributors | GitHub metrics |
User Experience Metrics¶
| Metric | Target | Method |
|---|---|---|
| Time to first inference | <15 minutes | User studies |
| Setup success rate | >90% | Telemetry |
| User satisfaction | >4/5 rating | Surveys |
| Documentation clarity | >4/5 rating | Feedback forms |
References¶
Primary Paper¶
- MoE-Lightning: Shiyi Cao et al., "MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs," arXiv:2411.11217, 2024. Link
Related Papers¶
MoE Architectures¶
- Mixtral: "Mixtral of Experts," Mistral AI, 2024
- DBRX: "Introducing DBRX," Databricks, 2024
- DeepSeek-MoE: "DeepSeekMoE: Towards Ultimate Expert Specialization," 2024
- GShard: Lepikhin et al., "GShard: Scaling Giant Models with Conditional Computation," 2020
Performance Modeling¶
- Roofline Model: Williams et al., "Roofline: An Insightful Visual Performance Model," CACM 2009
- LLM Inference Analysis: Yuan et al., "LLM Inference Unveiled: Survey and Roofline Model Insights," 2024
Inference Systems¶
- FlexGen: Sheng et al., "FlexGen: High-throughput Generative Inference," ICML 2023
- vLLM: Kwon et al., "Efficient Memory Management for LLM Serving with PagedAttention," SOSP 2023
- DeepSpeed-Inference: Aminabadi et al., "DeepSpeed-Inference: Enabling Efficient Inference," SC 2022
- FastDecode: He & Zhai, "FastDecode: High-throughput GPU-efficient LLM Serving," 2024
Optimization Techniques¶
- Flash Attention: Dao et al., "FlashAttention: Fast and Memory-Efficient Exact Attention," NeurIPS 2022
- Flash Attention 2: Dao, "FlashAttention-2: Faster Attention with Better Parallelism," ICLR 2024
- Speculative Decoding: Chen et al., "Accelerating LLM Decoding with Speculative Sampling," 2023
Implementation References¶
- PyTorch Documentation: https://pytorch.org/docs/stable/
- vLLM GitHub: https://github.com/vllm-project/vllm
- SGLang GitHub: https://github.com/sgl-project/sglang
- Intel Extension for PyTorch: https://github.com/intel/intel-extension-for-pytorch
- HuggingFace Transformers: https://github.com/huggingface/transformers
AI-OS Related¶
- Existing AI-OS architecture documentation
- Memory estimation system (
artifacts/memory_estimation/) - Expert management system (
artifacts/experts/) - HRM training integration (
aios/cli/aios.py- HRM commands)
Appendix¶
A. Glossary¶
- CGOPipe: CPU-GPU-I/O Pipeline scheduling strategy
- HRM: Hierarchical Roofline Model
- MoE: Mixture of Experts
- GQA: Grouped Query Attention
- FFN: Feed-Forward Network
- Operational Intensity: Ratio of FLOPs to bytes accessed (FLOPs/Byte)
- Roofline Model: Performance model correlating compute and memory bandwidth
- Turning Point: Critical operational intensity where bottleneck resource changes
- Balance Point: Optimal configuration where all resources are fully utilized
- Micro-batch: Subset of batch that fits in GPU memory for one kernel execution
- Weight Paging: Technique of chunking and scheduling weight transfers
B. Hardware Specifications¶
NVIDIA T4¶
- Memory: 16GB GDDR6
- Memory Bandwidth: 320 GB/s
- Compute (FP16): 65 TFLOPS
- TDP: 70W
- Use Case: Cost-effective inference
NVIDIA L4¶
- Memory: 24GB GDDR6
- Memory Bandwidth: 300 GB/s
- Compute (FP16): 121 TFLOPS
- TDP: 72W
- Use Case: Balanced performance/cost
NVIDIA A100¶
- Memory: 40GB or 80GB HBM2e
- Memory Bandwidth: 1.6 TB/s (40GB) / 2.0 TB/s (80GB)
- Compute (FP16): 312 TFLOPS
- TDP: 400W
- Use Case: High-performance inference
C. Model Specifications¶
Mixtral 8x7B¶
- Total Parameters: 46.7B
- Active Parameters: 12.9B per token
- Experts: 8 per MoE layer
- Top-K: 2
- Hidden Dim: 4096
- Intermediate Dim: 14336
- Layers: 32
- Memory (FP16): ~94GB
Mixtral 8x22B¶
- Total Parameters: 141B
- Active Parameters: ~39B per token
- Experts: 8 per MoE layer
- Top-K: 2
- Hidden Dim: 6144
- Memory (FP16): ~282GB
DBRX¶
- Total Parameters: 132B
- Active Parameters: 36B per token
- Experts: 16 per MoE layer
- Top-K: 4
- Layers: 40
- Memory (FP16): ~264GB
D. Configuration Examples¶
config/moe_lightning.yaml¶
# Hardware profiles
hardware:
t4_single:
gpu_memory: 16384 # MB
cpu_memory: 65536 # MB
gpu_bandwidth: 320 # GB/s
cpu_bandwidth: 100 # GB/s
cpu_to_gpu_bandwidth: 16 # GB/s (PCIe Gen3 x16)
gpu_compute: 65 # TFLOPS (FP16)
cpu_compute: 1.6 # TFLOPS
l4_single:
gpu_memory: 24576
cpu_memory: 65536
gpu_bandwidth: 300
cpu_bandwidth: 120
cpu_to_gpu_bandwidth: 16
gpu_compute: 121
cpu_compute: 1.6
# Model configurations
models:
mixtral-8x7b:
num_layers: 32
hidden_dim: 4096
intermediate_dim: 14336
num_experts: 8
top_k: 2
num_heads: 32
num_kv_heads: 8
# Default policies (auto-optimized if not specified)
policies:
mixtral-8x7b-t4:
batch_size: 36
micro_batch_size: 4
use_cpu_attention: true
use_gpu_ffn: true
weight_gpu_ratio: 0.0
kv_cache_gpu_ratio: 0.0
Contact & Collaboration¶
Project Lead: [To be assigned]
Technical Advisors: [Paper authors - optional consultation]
Discussion Forum: GitHub Discussions in AI-OS repo
Issue Tracking: GitHub Issues with label moe-lightning
Collaboration Opportunities: - Hardware vendors: Testing on diverse GPU configurations - Research institutions: Advanced optimization techniques - Open-source community: Code contributions and testing
Document Version: 1.0
Last Updated: November 8, 2025
Next Review: December 8, 2025