Evaluation System Enhancements¶
Status: 📋 Planned
Priority: Medium
Category: Model Evaluation & Benchmarking
Created: October 19, 2025
Based on: Evaluation system testing results (Oct 19-20, 2025)
Overview¶
Enhance the AI-OS evaluation system with extended benchmarking capabilities, advanced metrics, and comparison tools based on systematic testing of the current evaluation functionality.
Current State: Basic corpus analysis and checkpoint evaluation working via aios english-eval
Goal: Comprehensive evaluation suite with industry-standard benchmarks and automated comparison
Motivation¶
Recent systematic testing (Oct 2025) confirmed that: - ✅ Current evaluation system works correctly for corpus analysis - ✅ Multiple checkpoint formats supported (.pt, .safetensors) - ✅ Artifact storage and retrieval functional - ⚠️ Limited to readability metrics (Flesch scores, word counts) - ❌ No perplexity or loss-based quality metrics - ❌ No industry-standard benchmark support (hellaswag, arc, etc.) - ❌ No automated comparison between checkpoints
Planned Enhancements¶
1. LM-Evaluation-Harness Integration¶
Objective: Add industry-standard benchmark evaluation capabilities
Tasks:¶
- [ ] Install
lm-evaldependency - [ ] Integrate with existing
aios evalcommands - [ ] Enable standard benchmarks:
- [ ] HellaSwag (commonsense reasoning)
- [ ] ARC (science questions)
- [ ] MMLU (multitask understanding)
- [ ] TruthfulQA (truthfulness)
- [ ] GSM8K (math reasoning)
- [ ] HumanEval (code generation)
- [ ] Add custom task configuration support
- [ ] Store benchmark results in artifact system
Implementation Notes:¶
# Example integration
from lm_eval import evaluator, tasks
def run_lm_eval_benchmark(model_path: str, tasks: list[str]):
results = evaluator.simple_evaluate(
model="hf",
model_args=f"pretrained={model_path}",
tasks=tasks,
num_fewshot=0,
batch_size=8
)
return results
Benefits:¶
- Compare against published baselines
- Validate model capabilities across diverse tasks
- Standard metrics for model comparison
- Community-recognized benchmarks
2. Perplexity & Quality Metrics¶
Objective: Add model-specific quality metrics to checkpoint evaluations
Tasks:¶
- [ ] Implement perplexity calculation on test datasets
- [ ] Add cross-entropy loss metrics
- [ ] Calculate bits-per-character/byte
- [ ] Track token-level accuracy
- [ ] Add BLEU/ROUGE scores for generation tasks
- [ ] Implement diversity metrics (distinct-n)
- [ ] Add coherence scoring
Metrics to Add:¶
quality_metrics:
- perplexity: "Lower is better - measures prediction confidence"
- cross_entropy: "Average loss on test set"
- bits_per_byte: "Compression efficiency metric"
- token_accuracy: "Exact match rate for next token"
- distinct_1/distinct_2: "Vocabulary diversity in generations"
- coherence_score: "Semantic consistency measure"
Implementation Approach:¶
def calculate_checkpoint_metrics(model, dataset):
metrics = {
'perplexity': calculate_perplexity(model, dataset),
'cross_entropy': calculate_loss(model, dataset),
'bits_per_byte': calculate_bpb(model, dataset),
'token_accuracy': calculate_accuracy(model, dataset),
'generation_quality': evaluate_generations(model, dataset)
}
return metrics
Integration Points:¶
- Extend
aios english-evalto include these metrics when checkpoint provided - Store in artifact data structure
- Display in
aios artifacts-showoutput
3. Automated Comparison Tools¶
Objective: Enable side-by-side comparison of evaluation results
Tasks:¶
- [ ] Implement
aios eval comparecommand - [ ] Support multi-checkpoint comparison (2+ models)
- [ ] Generate comparison tables (markdown/HTML)
- [ ] Add visualization support:
- [ ] Performance radar charts
- [ ] Metric progression over training
- [ ] Task-specific comparison graphs
- [ ] Statistical significance testing
- [ ] Automated regression detection
CLI Interface:¶
# Compare two checkpoints
aios eval compare --checkpoints checkpoint1.pt checkpoint2.pt --dataset eval.txt
# Compare multiple evaluations by artifact ID
aios eval compare --artifact-ids 2 3 4 5
# Compare with baseline
aios eval compare --checkpoint my_model.pt --baseline gpt2
# Generate report
aios eval compare --checkpoints model1.pt model2.pt --output comparison_report.html
Comparison Report Features:¶
- Metric Deltas: Show improvement/regression percentages
- Statistical Tests: P-values for significance
- Ranking: Best-to-worst across metrics
- Recommendations: Identify which checkpoint to use for what purpose
- Regression Alerts: Flag significant performance drops
Data Structure:¶
@dataclass
class ComparisonResult:
checkpoints: list[str]
metrics: dict[str, list[float]]
deltas: dict[str, list[float]] # Percentage changes
statistical_significance: dict[str, float] # p-values
rankings: dict[str, list[int]]
recommendations: str
regression_alerts: list[str]
Implementation Plan¶
Phase 1: LM-Eval Integration (Week 1-2)¶
- Install and test lm-eval library
- Create wrapper functions for common benchmarks
- Integrate with existing CLI commands
- Test on ActV1 models
- Document usage and available tasks
Phase 2: Perplexity Metrics (Week 2-3)¶
- Implement perplexity calculation
- Add to english-eval output
- Store in artifact system
- Add generation quality metrics
- Test across different checkpoints
Phase 3: Comparison Tools (Week 3-4)¶
- Design comparison data structures
- Implement
aios eval comparecommand - Add table/visualization generation
- Implement statistical testing
- Create automated reports
- Add regression detection
Phase 4: Documentation & Testing (Week 4)¶
- Comprehensive user documentation
- Example workflows and tutorials
- Unit tests for all new functions
- Integration tests with real checkpoints
- Performance benchmarking
Technical Requirements¶
Dependencies:¶
[dependencies]
lm-eval = "^0.4.0" # LM Evaluation Harness
scipy = "^1.11.0" # Statistical tests
matplotlib = "^3.8.0" # Visualizations
seaborn = "^0.13.0" # Enhanced plots
jinja2 = "^3.1.0" # HTML report templates
Compatibility:¶
- Python 3.10+
- PyTorch 2.0+
- Transformers 4.35+
- Works with existing .pt and .safetensors checkpoints
File Structure¶
src/aios/
├── evaluation/
│ ├── __init__.py
│ ├── lm_eval_wrapper.py # LM-eval integration
│ ├── metrics.py # Perplexity, quality metrics
│ ├── comparison.py # Comparison tools
│ ├── reports.py # Report generation
│ └── visualization.py # Plotting functions
├── cli/
│ └── eval_commands.py # Extended CLI commands
└── templates/
├── comparison_report.html # HTML template
└── comparison_table.md # Markdown template
Usage Examples¶
Example 1: Standard Benchmark¶
# Run hellaswag benchmark
aios eval run --checkpoint artifacts/brains/actv1/final_model.pt \
--tasks hellaswag \
--label "actv1-hellaswag"
# View results
aios artifacts-show-latest
Example 2: Comprehensive Evaluation¶
# Run multiple benchmarks with quality metrics
aios eval run --checkpoint my_model.pt \
--tasks hellaswag,arc_easy,arc_challenge \
--dataset eval_dataset.txt \
--include-perplexity \
--include-generation-metrics \
--label "comprehensive-eval"
Example 3: Compare Checkpoints¶
# Compare training progression
aios eval compare \
--checkpoints artifacts/brains/actv1/English-v1/actv1_student.safetensors \
artifacts/brains/actv1/English-v2/actv1_student.safetensors \
artifacts/brains/actv1/English-v3/actv1_student.safetensors \
artifacts/brains/actv1/English-v4/actv1_student.safetensors \
--dataset training_data/eval_test_dataset.txt \
--output training_progression.html \
--show-deltas
Example 4: Automated Testing¶
# Compare new checkpoint against baseline
aios eval compare \
--checkpoint new_checkpoint.pt \
--baseline artifacts/brains/actv1/final_model.pt \
--dataset validation_set.txt \
--fail-on-regression \
--threshold 5.0 # Fail if >5% regression on any metric
Success Metrics¶
Quantitative:¶
- [ ] 10+ standard benchmarks supported
- [ ] 5+ quality metrics per evaluation
- [ ] Comparison reports generated in <30 seconds
- [ ] 100% compatibility with existing checkpoints
- [ ] <1 minute evaluation time for standard datasets
Qualitative:¶
- [ ] Users can easily compare model versions
- [ ] Clear identification of best checkpoint for tasks
- [ ] Automated CI/CD integration possible
- [ ] Reports are readable and actionable
Testing Strategy¶
Unit Tests:¶
- Metric calculation accuracy
- Statistical test correctness
- Report generation validity
Integration Tests:¶
- End-to-end benchmark runs
- Multi-checkpoint comparisons
- Artifact storage/retrieval
Validation Tests:¶
- Compare against known baselines
- Verify statistical significance calculations
- Cross-check with manual evaluations
Risks & Mitigations¶
| Risk | Impact | Mitigation |
|---|---|---|
| lm-eval dependency conflicts | High | Pin compatible versions, test thoroughly |
| Slow benchmark evaluation | Medium | Add batching, caching, parallel execution |
| Large artifact storage | Medium | Implement result compression, selective storage |
| API changes in lm-eval | Medium | Pin version, abstract wrapper layer |
| Comparison complexity | Low | Start simple, iterate based on feedback |
Future Enhancements¶
Post-V1:¶
- [ ] Multi-GPU distributed evaluation
- [ ] Cloud-based benchmark execution
- [ ] Continuous evaluation dashboard
- [ ] A/B testing framework
- [ ] Automatic hyperparameter tuning based on eval results
- [ ] Custom benchmark creation wizard
- [ ] Integration with experiment tracking (MLflow, W&B)
Advanced Features:¶
- [ ] Model capability mapping (what tasks is model good at?)
- [ ] Automatic prompt optimization based on eval results
- [ ] Cross-model ensemble recommendations
- [ ] Failure analysis and debugging tools
References¶
- EleutherAI LM Evaluation Harness
- Hugging Face Evaluate Library
- OpenAI Evals Framework
- Current evaluation test results:
artifacts/evaluation/evaluation_test_results.md
Related Issues¶
- Extends existing
aios english-evalfunctionality - Complements training metrics in
artifacts/brains/actv1/metrics.jsonl - Supports model selection for production deployment
Changelog¶
- 2025-10-19: Initial plan created based on systematic evaluation testing
- Next: Prioritize and schedule implementation
Note: This plan is based on successful validation of the current evaluation system. All proposed enhancements build on working infrastructure and verified checkpoint compatibility.